<table>
<thead>
<tr>
<th>Title</th>
<th>Developing Recursive Forward Chaining Method in Ternary Grid Expert Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Yuliadi Erdani</td>
</tr>
<tr>
<td>Citation</td>
<td>Vol. 11 No. 8 pp. 126-130</td>
</tr>
<tr>
<td>Abstract</td>
<td>The performance of expert systems is determined by the performance of its main components. One of the mentioned components is the inference engine. It infers the knowledge of the expert system and provides an answer to the user. Since the idea of ternary grid was published in 2004, there is only one developed method, technique, or engine working on ternary grid knowledge model. In 2010, an inference method of expert system based on ternary grid was developed. The process of inference implements iterative forward chaining. The disadvantage of the mentioned method is low efficiency because of the high number of iterative processes. In order to improve efficiency, a new method of forward chaining in ternary grid has been developed. It implements recursive processes. This paper describes the development of inference engine of expert system that can work in ternary grid knowledge model. The strategy to inference knowledge uses forward chaining with recursive processes. The design result is implemented in the form of software. The result of experiment shows that the inference process works properly and more efficient in comparison to the previous developed iterative forward chaining.</td>
</tr>
<tr>
<td>Keywords</td>
<td>expert system, inference method, recursive method, ternary grid</td>
</tr>
</tbody>
</table>
Developing Recursive Forward Chaining Method in Ternary Grid Expert Systems

Vulladi Erdani
Politeknik Manufaktur Negeri Bandung, Indonesia

Summary
The performance of expert systems is determined by the performance of its main components. One of mentioned component is inference engine. It infers the knowledge of expert system and gives answer to user. Since the idea of ternary grid issued in 2004, there is only several developed method, technique or engine working on ternary grid knowledge model. In 2010 an inference method of expert system based on ternary grid was developed. The process of inference implements iterative forward chaining. The disadvantage of mentioned method is low efficiency because of the high number of iterative process. In order to improve the efficiency, a new method of forward chaining in ternary grid has been developed. It implements recursive process. This paper describes the development of inference engine of expert system that can work in ternary grid knowledge model. The strategy to inference knowledge uses forward chaining with recursive process. The design result is implemented in the form of software. The result of experiment shows that the inference process works properly and more efficient in comparison to the previous developed iterative forward chaining.

Key words: expert system, inference method, recursive method, ternary grid

1. Introduction
An expert system is a set of programs that manipulate encoded knowledge to solve problems in a specialized domain that normally requires human expertise. An expert system’s knowledge is obtained from expert sources and coded in a form suitable for the system to use in its inference or reasoning processes. The expert knowledge must be obtained from specialist or other sources of expertise, such as texts, journal, articles, and database [9]. This type of knowledge usually requires much training and experience in some specialized field such as medicine, geology, system configuration, or engineering design. Once a sufficient body of expert knowledge has been acquired, it must be encoded in some form, loaded into a knowledge base, then tested, and refined continually throughout the life of the system.
Expert systems can perform some task which requires expertise. Such tasks often have one or more of the following characteristics: the task may be difficult to specify, the task may have incomplete or uncertain data, there may not always be an optimum solution, the task cannot be solved in a step-by-step manner, and solutions are often obtained by using accumulated experience [9][5][14].
Expert systems can bring the following benefits [13]: they can preserve valuable knowledge which would otherwise be lost when an expert system is no longer available, they can allow an expert to concentrate on more difficult aspect of the task, they can enforce consistency, and they can perform dangerous tasks which would otherwise be carried out by humans.
One of known and very popular expert system type is production rule. Production rule are simple but powerful forms of knowledge representation providing the flexibility of combining declarative and procedural representation for using them in a unified form. The term production rule came from production system which is developed by [12]. A production system is a model of cognitive processing, consisting of a collection of rules (called production rules, or just productions). Each rule has two parts: a condition part and an action (conclusion) part. The meaning of the rule is that when the condition holds true, then the action is taken. A typical production rule is given below:

\[
\text{IF} \ (\text{mathematic score} \geq 60\%) \ \text{AND} \ (\text{physics score} \geq 50\%)
\]

THEN student passed the examination

The statement of the rule above means that a student can pass the examination if he/she has got mathematic score more than or equal 60% and physics score more than 58%. Production system or production rule provides appropriate structures for performing and describing search process. A production system has four basic components as enumerated below [10]: A set of rules following the classical IF-THEN construct. If the conditions on the left-hand side are satisfied, the rule is fired, resulting in the performance of action on the right-hand side of the rule. A database of current facts established during the process of inference. A control strategy which specifies the order in which the rule are selected for matching of antecedents by comparing the facts in the database. It also specifies how

Manuscript received August 5, 2011
Manuscript revised August 20, 2011
to resolve conflicts in selection of rule or selection of facts, and a rule firing module. An expert system that implements production rules is known as a rule-based expert system.

In most rule-based expert systems, building of rules can easily be done. Knowledge engineer does not have to do any work specifying rules and how they are linked to each other. Sometimes the knowledge engineer can reference rules or facts that have not yet been created. It seems to be a simple and an instant work. The problem due to the performance of the knowledge will not occur until the number of rules is getting higher. Some problem may appear in the form of inconsistent rules, unreachable rules, redundant rule, and closed rule chain of rules.

In 2004 the solution to those problems were issued. It known as Ternary Grid [1][2][3]. Since the idea of ternary grid issued in 2004, there is no any developed inference method, technique or machine working on ternary grid knowledge model. As consequence of it, all ternary grid knowledge must be converted into production system format, so that the knowledge can be processed by rule-based inference machine to deliver solution.

The inference engine of an expert system takes over the processing of the rules, which is called with rule-based expert systems also easily rule interpreters [7]. By the numerous methods of problem solution, which can be implemented in a rule interpreter, only the representatives of the concatenation strategies are to be treated here: forward chaining and backward chaining.

Ternary grid knowledge model is an alternative solution to solve the mentioned problem. The developed inference machine of expert system can work in ternary grid knowledge model. The strategy to find solution uses forward chaining with iterative approach [6]. Due to the efficiency of algorithm, the recursive approach should be implemented in forward chaining process, which will be explained in this paper.

2. Method

The organisation of production rule can be easily represented in a Ternary Grid that has the following structure in Fig. 1.

\[i = \{1, 2, 3, \ldots, I\} \]
\[j = \{1, 2, 3, \ldots, J\} \]
\[J > I + 1 \]

The Value of every grid box is 0, 1 or 2.
0 = unused, is represented by empty grid box.
1 = Fact Fm belongs to the condition part of rule Rn (LHS = Left Hand Side).
2 = Fact Fm is part of the conclusion part of Rn (RHS = Right-Hand Side).

![Fig. 2. Ternary Grid as matrix](image)

Ternary Grid can be considered as matrix. It is shown in the Fig. 2.

\[a_{ij} = \{0, 1, 2\} \]

Value 0 is represented by empty matrix cell. The following value sets are needed for knowledge optimisation process:

The set of condition parts in row i is determined as follows:

\[Ri1 = \{ j \mid a_{ij} = 1 \} \] \hspace{1cm} (1)

The set of conclusion parts in row i is determined as follows:

\[Ri2 = \{ j \mid a_{ij} = 2 \} \] \hspace{1cm} (2)

The set of condition parts in column j is determined as follows:

\[Fj1 = \{ i \mid a_{ij} = 1 \} \] \hspace{1cm} (3)

The set of conclusion parts in column j is determined as follows:

\[Fj2 = \{ i \mid a_{ij} = 2 \} \] \hspace{1cm} (4)
The developed forward chaining method will be implemented in inference engine of expert system based on Ternary Grid. Inference engine of expert system is computer program that answers questions from user. It processes all information from the knowledge base by firing rules and facts [11].

In the previous approach where iterative process was implemented, the complexity can be described as follows:

$$n = \sum_i \sum_j x_{ij}$$ \hspace{1cm} (5)

Using recursive approach, the process of forward chaining can be illustrated as follows:

![Diagram of Forward Chaining](image)

3. Result

The same data as [6] is used in this experiment.

\text{IF} \ <\text{tutorial score } \geq 60> \ \text{AND} \ <\text{thesis draft is finished}> \ \text{THEN} \ <\text{tutorial result passed}>; \ \text{IF} \ <\text{tutorial result passed}> \ \text{AND} \ <\text{presentation score greater than or equals } 60> \ \text{AND} \ <\text{comprehensive test passed}> \ \text{THEN} \ <\text{final project passes}>; \ \text{IF} \ <\text{final project passes}> \ \text{AND} \ <\text{thesis revision on time}> \ \text{THEN} \ <\text{graduation on time}>; \ \text{IF} \ <\text{final project passes}> \ \text{AND} \ <\text{thesis revision not on time}> \ \text{THEN} \ <\text{graduation postponed}>

According to Ternary Grid acquisition technique [3], the mentioned rules are inputted into ternary grid knowledge base as it is shown in fig. 4. Using the developed concept, the rule-based format must not be converted into ternary grid. The inference process of the expert system in ternary grid uses forward chaining with recursive approach. All fact inputs are stored in set of facts F_k. The inference engine searches all rules that are possible to be executed and stores them in set of rules R_x which.

$$R_x = \left\{ p \mid p \rightarrow q, \ p \in F_k, \ p \in F, \ F_k \subseteq F \right\}$$ \hspace{1cm} (6)

The inference engine determines then rules that are able to be applied and stores in the following set of rule R_{yn}.

$$R_{yn} \subseteq R_x$$ \hspace{1cm} (7)
To avoid duplication, the following formula are implemented in the inference engine
\[R_x = \bigcup_n R_{x_n} \]
(8)

4. Conclusion

The developed inference engine using recursive forward chaining method in ternary grid works properly. It can determine all facts that lead to rules which are possible to be applied. In comparison to the previous work using iterative approach, the developed method can reduce the number of looping significantly and works therefore more efficient. Referring to some literatures concerned expert systems, the developed method is novel and will give contribution in developing inference method of expert systems.

Acknowledgments

I would like to express my gratitude to all those who gave me the possibility to complete this paper. The special thank goes to DP2M-DIKTI (DIT LITABMAS DIKTI) that provides me with competence research grant (Hibah Kompetensi).
References

Dr. Ing., Yuliadi Erdani, M.Sc., Dipl. Ing., HTL received the B.S. degree in Electrical Engineering from the Ingenieurschule Burgdorf (ISB) Switzerland in 1995 and the M.S. degree in Computer Science and Communication Engineering (CSCE) from the University of Duisburg, Germany in 2002. He received PhD degree (Dr.-Ing.) in Informationstechnik from the same university i.e. University of Duisburg-Essen, Germany in 2005. He did a lot of work with expert systems. He has been continuing his research work in the area of expert systems from 2006 until now and every year he always got research fund/grant. He works now as lecture in a state Polytechnic (university of applied science) in Bandung, Indonesia.